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Summary
This report contains the following group of manuscripts which present the work

performe4 during the project period. Also included are the results of a study on polymer
negative Poisson's ratio foam conducted by the David Taylor Laboratory, and several
earlier viscoelastic studies by the present author.

Lakes, R.S., "Deformation mechanisms of negative Poisson's ratio materials:
structural aspects", J. Materials Science, 26: 2287-2292 (1991).

Chen, C.P. and Lakes, R.S., "Holographic study of conventional and negative
Poisson's ratio metallic foams: elasticity, yield, and micro-deformation", J. Materials
Science, accepted (1990).

Chen, C.P. and Lakes, R.S., "Analysis of high loss viscoelastic composites",
submitted

Chen, C.P. and Lakes, R.S., "Viscoelastic behavior of composite materials with
conventional or negative Poisson's ratio foam as one phase", submitted

Chen, C.P. and Lake3, R.S., "Holographic study of micro-deformation of metallic
negative Poisson's ratio foams" in draft form

The principal conclusions are as follows.

1 Non-affine deformation (in which points in a solid move in a way which cannot be
described simply as a strain combined with a rotation) is identified theoretically as a
dominant deformation mechanism in materials with negative Poisson's ratios.

2 Non-affine deformation Is observed experimentally in materials with negative
Poisson's ratios. The effect may be greater or less than that of conventional cellular
solids, depending on processing.

3 Non-affine deformation is found theoretically to be essential in achieving high
loss combined with high stiffness in composites of a stiff material and a soft, lossy
material.

4 Viscoelastic properties of copper foam- viscoelastic elastomer composites
exceeded the (lower) Voigt limit. Composite based on re-entrant foam exhibited a higher
loss than one based on conventional foam.

5 High loss and relatively stiff materials were studied: solder, indium, gallium,
and ferrites. A magnetic ferrite exhibited the highest loss tangent at acoustic
frequencies.

6 Composites of copper foam with indium or solder exhibited losses close to the
Hashin three phase upper bound with the third phase being a residual amount of pore
space.
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Abstract
Micro-deformation studies of conventional and negative Poisson's ratio copper

foams were conducted holographically. Inhomogeneous, non-affine deformation was
observed holographically in both foam materials. The negative Poisson's ratio material
with a permanent volumetric compression ratio 2.2 exhibited a substantially greater
non-affine deformation than the conventional material, in contrast to foam with
compression ratio 3.0 examined earlier.

Introduction
Conventional foams, like other ordinary materials, exhibit a positive Poisson's

ratio, that is, they become smaller in cross-section when stretched and larger when
compressed. Recently, the invention of negative Poisson's ratio foams was reported1 2 ,3 .

Foam materials based on metal and several polymers were transformed so that their
cellular architecture became re-entrant, i.e. with inwardly protruding cell ribs. Foams
with re-entrant structures exhibited negative Poisson's ratios as well as greater
resilience than conventional foams.

An experimental study by holographic interferometry was reported of the Young's
moduli, Poisson's ratios, yield strengths and characteristic lengths associated with
inhomogeneous deformation of the conventional and negative Poisson's ratio metallic
foams 4. The Young's modulus and yield strength of the conventional copper foam were
comparable to those predicted by microstructural modelling on the basis of cellular rib
bending. The re-entrant copper foam exhibited a negative Poisson's ratio as indicated by
the elliptic contour fringes on the specimen surface in the bending tests. Inhomogeneous,
non-affine deformation was observed holographically in both foam materials.

The present study applies double-exposure holographic interferometry to examine
micro-deformation of re-entrant copper foam with a negative Poisson's ratio of -0.8.

Material and method
Bending experiments were conducted upon re-entrant copper foam specimens at

room temperature. The re-entrant structure was transformed as that a maximum value
of negative Poisson's ratio -0.8 at a strain level of 0.1% as determined earlier5 by
shadow moir6. The conventional copper foam used was open cell with density 0.715 g
cm "3 , solid volume fraction 0.08, and average cell size 0.4 mm. It is worth noting that
the density of copper foam was not uniformly distributed. The density measured on
different portions inside a foam block can vary5 from 0.08 to 0.1. The copper foam was
transformed into re-entrant structure by successive applications of small increments of
plastic deformation in three orthogonal directions, as described earlier 1 '2 '3 . The
density of the re-entrant copper foam tested here was 1.57 g cm "3 with a permanent
volumetric compression ratio of approximately 2.2, and solid volume fraction 0.22. The
dimensions of the re-entrant copper foam specimen was 5.7mm by 10.8mm in cross
section and 35.5mm in length. For the purpose of comparison, a re-entrant foam
specimen was annealed at 5000C before being tested. The anneal process did not result in
measurable change in the foam dimensions. The dimensions of the annealed re-entrant
copper foam specimen was 7.75 mm by 7.9 mm in cross section and 36 mm in length.
The specimens were machine finished to obtain the desired surface smoothness.

The experimental study of the re-entrant copper foams by holographic
interferometry is as described earlier4 . The specimen was deformed by a nearly pure
bending moment. The zero-order fringe method [ZF]6 was used to obtain the specimen's
Young's moduli and Poisson's ratios from the fringe pattern on the strained surface of the
specimen. The non-affine deformation of the re-entrant foam was also studied by the



zero-order fringe method. The inhomogeneous deformation of the non-affine type was
visualized as an increase in the bumpiness of the fringes in response to the increasing
loads. The results were compared with those obtained earlier4.

Results and Discussion
The results of the Young's moduli and Poisson's ratios are listed in Table 1, in

comparison with the previous results for the re-entrant copper foam with a permanent
4volumetric compression ratio of approximately three . Each Young's modulus was

determined at two strain levels. The Young's modulus remained approximately constant
when the strain level was increased. For the non-annealed re-entrant copper foam, the
Young's modulus was found to be 390 MPa at a macroscopic strain of 1.4 x 10-4 and 1.7
x 10- 4 and 200 MPa at a macroscopic strain of 1.6 x 10- 4 and 3.0 x 10-4 , on the
strained surface of width 10.8mm and 5.7mm, respectively. For the annealed re-
entrant copper foam, the Young's modulus was obtained to be 510 MPa at a macroscopic
strain of 9.5 x 10- 5 and 1.8 x 10-4; and 245 MPa at a macroscopic strain 9.7 x 10- 5

and 1.8 x 10- 4 , on the strained surface of width 7.9mm and 7.75mm, respectively. In
the previous results4 for the re-entrant copper foam with a permanent volumetric
compression ratio of approximately 3, the Young's modulus was obtained to be 480 MPa
at a macroscopic strain of 6.7x 10-4 .

The Young's moduli obtained from bending in two orthogonal directions differed by a
factor of two. Anisotropy will not give rise to such an effect since a bending experiment
in any transverse direction discloses the Young's modulus for strain along the beam axis
even if the beam is anisotropic. Anisotropy could arise from different permanent
compression in the three orthogonal directions, however care was taken to avoid that.
Nonuniformity in the permanent compression process could give rise to such results.

The fringe pattern obtained for these current tests were observed to be bumpier

than that obtained previously 4 . The comparison of the clarity of the fringes of the re-
entrant foams was shown in Figure 1. The non-affine motion disclosed by these
experiments is an average value perpendicular to the specimen surface. The maximum
strain level for the minimum observable clarity of the fringe pattern was 2.5 x 10-4 ,

well below 9.2 x 10- 4 as obtained previously4 for re-entrant foam of a higher
permanent volumetric compression. The Poisson's ratio for both non-annealed and
annealed re-entrant copper foams could not be determined in this experiment since the
fringes could only be recognized at a low macroscopic strain level. At low strain, only a
small part of the elliptic fringes was visible on the surface and therefore the Poisson's
ratio were not obtainable. However, the Poisson's ratio of this type of re-entrant copper
foam was determined to be -0.8 by the shadow moire test earlier5 .

Quantitative measures of such inhomogeneous deformation may be defined as
follows: the ratio r" of micro-strain to macro-strain M, r' - (8/dcell)/Fm,,,o; and a
micro-deformation characteristic length 2 m- 8/r,., in which 8 is the inhomogeneous
micro-deformation and dcell is the cell size. In the present zero-order fringe
experiments the fringes become totally fragmented when the micro-deformation over
one cell is one fringe or half a wavelength of red light, so 8 = 0.1 im. The cell size is
0.4 mm for conventional foam and 0.4mm/(2.2)1 3 for the present re-entrant foam.
Consequently, for the conventional copper foam4 , "avg.. - 2.1, and ,2 m - 0.86mm; for the
previous re-entrant foam of permanent compression ratio 3, Favg.. - 1.3, 2 m M
0.38mm; for the present re-entrant foam, rvg.± - 3.9, Am = 4 mm. So in the present



re-entrant foam, both measures of the degree of Inhomogeneous deformation are greater
than in the case of conventional foam or a previous re-entrant foam.

The inhomogeneous, non-affine micro-deformation observed in the foams has
several interesting implications as discussed in more detail in an earlier

communication4 . Micro deformation is evidence of generalized continuum behavior in the

material 7 . The micro-deformation and local rotation degrees of freedom of these
materials are intimately connected with a toughening mechanism governed by
redistribution of stress around cracks and holes.

CONCLUSIONS
1. Negative Poisson's ratio copper foam with a permanent volumetric compression ratio

of 2.2 exhibits a greater non-affine deformation than either conventional foam or
negative Poisson's ratio foam with a volumetric compression ratio of 3.
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1. The clarity of the fringe pattern versus the macroscopic strain, bending test. _

3
Conventional copper foam, density 0.795 g/cm , Poisson's ratio 0.25, specimen size
9mm by 15mm by 34mm, _ : Re-entrant copper foam, compression ratio 3.0,
Poisson's ratio -0.11, specimen size 6mm by 6.5mm by 26mm, # : Re-entrant
copper foam, compression ratio 2.2, Poisson's ratio not available, specimen size
5.7mm by 10.8mm by 35.5mm.



Table 1. Specimen dimensions and properties

Width of strained surface is last dimension in 'specimen size'.

Permanent Young's Inhomogeneous

Specimen size Compression Poisson's modulus deformation

SOIMaa. LmmL MUi LAU _L

Re-entrant

copper foam 26 x 6 x 6.5 3.0 -0.11 480 MPa 1.3

Re-entrant

copper foam 35.5 x 5.7 x 10.8 2.2 N/A 390 MPa

35.5 x 10.8 x 5.7 200 MPa

Re-entrant

copper foam

annealed 36 x 7.75 x 7.9 2.2 N/A 510 MPa 3.9

at 5000C 36 x 7.9 x 7.75 245 MPa
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Synopsis

This article describes experimental investigations of viscoelastic properties of

composites consisting of conventional and re-entrant negative Poisson's ratio copper

foam as a matrix, with high loss filler materials: viscoelastic elastomer, solder, and

indium. Viscoelastic properties of gallium and several ferrites were determined as well.

The loss tangent of the copper- elastomer composite substantially exceeded the (lower)

Voigt limit; the loss tangent of the copper-solder and copper-indium composites were

close to the (upper) Hashin limit for two solid phases and one pore phase.

INTRODUCTION
In an accompanying article we have considered predictions of viscoelastic behavior of

composite materials with various structures (Chen and Lakes,1992). Structures which

give rise to the highest viscoelastic loss tangent have the common feature that the

microscopic distribution of strain is nonuniform so that the deformation kinematics of

points in the composite is non-affine. The reason that high loss can arise in composites

of this type is that the strain in the lossy, compliant phase is higher than the

macroscopic strain in the composite. Non-affine deformation is also characteristic of the

recently developed foam materials with negative Poisson's ratios (Lakes, 1987, 1991).

Experimental studies of the conventional and negative Poisson's ratio copper foams by

holographic interferometry showed that inhomogeneous, non-affine deformation

occurred in the ribs of copper foams (Chen and Lakes, in press).

The present work is directed at the exploration of model composite materials which

exhibit non-affine deformation with the ultimate aim of development of composites with

high stiffness and high loss. To that end, we investigate the dynamic viscoelastic

properties of composites of both conventional and negative Poisson's ratio copper foams

filled with materials of known high loss. This is in contrast to all earlier studies on such

foams, which have considered the foam skeleton only, without a second solid phase.

MICROMECHANICS APPARATUS METHOD
The experimental method made use of a micromechanics apparatus originally

developed for the study of Cosserat elasticity in composites, and evolved for the study of

viscoelastic materials (Chen and Lakes,1991). The apparatus and associated analysis

scheme is capable of determining the viscoelastic properties of a material isothermally,

with a single apparatus, over 10 decades of time and frequency. Torque was applied to the

specimen electromagnetically and its deformation was determined by laser
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interferometry. Resonances were eliminated from the torque and angle measuring

devices by this approach. Resonances remaining in the specimen itself were corrected by

a numerical analysis scheme based on an a, alytical solution which is applicable to

homogeneous cylindrical specimens of any degree of loss. The apparatus is capable of

creep, constant load rate, subresonant dynamic, and resonant dynamic experiments in

bending and torsion. The range of equivalent frequency for torsion is from less than 10-6

Hz to about 104 Hz.

Analysis of the data to obtain the mptenal's complex shear modulus

G*. IG*I(1 + i tan 8) is based on a numerical inversion of the following exact relation

for the torsional dynamics of a viscoelastic cylinder (Christensen, 1982).

M *COtWQ
lsp (02 h - lat(0 2

in which M* is the measured sinusoidal torque applied, 0D is the measured end angular

displacement, Isp is the mass moment of inertia of the specimen, W is the angular

frequency in radians per second, Q -- [pw 2 h2/KG*] 1/ 2 , p is the mass density of the

specimen, h is the length of the specimen, K is a geometrical constant, 1 for a specimen

with circular cross section; 0.8 for a specimen with square cross section, G" is the

complex shear modulus, and lat is the mass moment of inertia of the end attachment. This

analysis scheme incorporates the assumption of a continuous viscoelastic medium. The

foams are not continuous, but a difference would not become apparent until the resonant

frequency of the foam ribs is approached, at frequencies well above those used here. The

phase angle between stress and strain was measured with an oscilloscope, as in earlier

studies. The resolution of the phase angle on the oscilloscope was approximately 0.70, or

a corresponding tan8 of 0.012. The loss tangent of low loss specimens was therefore not

obtainable by this method under subresonant conditions at low frequencies. A digital lock

in amplifier was tried to improve phase resolution, but it generated unacceptable phase

errors. A different brand of lock in amplifier is now being evaluated. The phase

resolution was considered adequate for the purposes of this study.

Data reduction in the case of small loss (i.e., tanS , 1) becomes considerably

simplified (Christensen, 1982) and errors due to phase uncertainty are reduced (Chen

and Lakes,1991) in the vicinity of resonance

-3-tanS :m AO) (2 )
0o

The loss tangent tan8 of low loss materials can therefore be obtained from a specimen

of proper size with an external inertia at a resonant frequency via Equation (2). In this
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study, frequencies associated with vibration and acoustic signals are of particular

interest, therefore the lengthy creep experiments used in previous studies are omitted.

Experiments were conducted at room temperature (220 C ± 20C); for each individual test

the temperature was constant to within 0.50C.

MATERIALS
Materials studied included conventional and re-entrant copper foam, solid brass, a

high-loss viscoelastic elastomeric polymer, solder (PbSn, 60:40), indium, gallium,

and several ferrites. The rationale for the choice of the metals is that since their melting

points are low, viscoelastic loss due to grain boundary motion or stress induced diffusion

is to be expected at room temperature.

The foams were cut with a low speed diamond saw (Isomet, inc) into prisms of nearly

square cross section. The elastomer was cast in a long rod. The (solid) solder wire was

studied in as-ieceived condition. The indium wire was studied in as-received condition;

following heating at 2400C and cooling to 200C; and following melting at 3000C and

solidification at -200C. The gallium was melted and cast into a plastic tubule. The

ferrites were cut with a low speed diamond saw into slender prisms of nearly square

cross section. The conventional copper foam is open cell with average cell size 1 mm, and

density 0.68 g/cm3 or solid volume fraction 7.6%. The re-entrant copper foam with

cell size 0.67 mm resulted from a permanent volumetric compression ratio of 1.48. A

negative Poisson's as small as -0.8 can be obtained (Choi and Lakes, in press) under

these conditions. Specimen sizes were chosen to achieve appropriate structural stiffness

for the tests and are shown in Table 1.

Composite specimens were prepared with copper foam as a matrix and polymer,

solder, or indium as fillers. In initial trials, the filler metal was heated by a propane

torch or in a furnace, with soldering flux, with the aim of incorporating the melted

metal in the voids in the foam. This procedure did not fill the entire void space in the

foam with metal: composite prepared this way had over 50% void volume. Composite

foams with low void content were prepared by heating the copper foams and the filler

metals in an evacuated glass tube in an oven. This procedure prevented surface oxidation

of the copper and improved wetting. The filler metals were melted at approximately

2000C and deposited into the copper foams by gravity. No oxidation was observed. The

void content in the composite foams thus made was found to be less than 15% by volume.

Voids with diameter from 0.025 mm to 0.1 mm were observed microscopicaily to be

scattered inside the foams. No discontinuities between the copper matrix and filler were
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observed. The injection of viscoelastic elastomer into the copper foams was made

courtesy of Polymer Dynamics, Inc, Lehigh Valley, PA.

PESULTS AND DISCUSSION
The dynamic shear modulus IG*I of solid copper at 1 kHz was found to be 40 GPa and

the loss tangent tan8 was 0.002. The loss tangent tan8 of copper at 0.1 Hz is given as

about 0.0001 (Smithells, 1976).
Dynamic shear moduli IG'I and loss tangent tan8 vs frequency of foams and solid

filler materials derived from torsional tests are shown in Figures 1-8. The maximum
errors in IG*I and tan8 due to the uncertainties in the specimen geometry and

measurement accuracies are shown as error bars in Figures 1-9 and 13. Where no

error bar is shown, the estimated error is smaller than the thickness of the data points.
Specimen resonances are denoted by downward pointing arrows. Figure 1 shows results

for copper foams of conventional and re-entrant structures. It is observed that the
copper foams behave somewhat differently from solid copper: IG*I and tan8 increased

substantially at high frequencies. Conventional copper foam exhibits higher IG*I than

the re-entrant copper foam, which is similar to results observed for the copper and
polymeric foams in the earlier studies (Lakes, 1987). Higher tan8 is obtained at high

frequencies for the re-entrant foam than the conventional foam.

Table 2 summarizes stiffness and loss results at selected frequencies for the
homogeneous materials studied here as well as the copper foams without any filler. The
value of the loss tangent for solid copper at low frequency is from Smithells(1976).

Table 3 gives corresponding results for composites based on the foams combined with

other materials within the interstices.
Figure 2 shows results for a viscoelastic elastomeric polymer, which exhibits

monotonically increasing modulus and loss tangent. The results of the composites of
polymer filler and conventional, and re-entrant copper foams are shown in Figure 3.
The composites show a loss tangent value between those of the solid polymer and foams.

However, it is worth noting that the moduli of the composites are almost twice as large

than those of the polymer and the foams. This suggests an effect of non-affine

deformation.
Figure 4 shows results for solder. In contrast to the polymeric materials and the

copper foams, tanS of solder decreases when the frequency increases. Figure 5 shows

results for the conventional, and re-entrant copper foams combined with large void

content solder filler. The moduli of the composites are only slightly higher than those of
the foams; these are much lower than the modulus of the solder, 9.72 GPa at 0.1 Hz.
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This is as expected since the volumetric fractions of the solder deposited in the foams are

low, 22% and 34% for the conventional and re-entrant foams, respectively. Figure 6

shows results for the conventional, and re-entrant copper foams combined with low void

content solder filler. The moduli at 0.1 Hz of the composites are 9.3 GPa and 11.9 GPa

for composites with the conventional and re-entrant foam matrixes, respectively. The

modulus of the composite with the re-entrant copper foam matrix is higher than that

with the conventional foam matrix even though the solder fraction in the former is

slightly lower than the latter. This is contrast to what observed for the pure copper

foams and the composites combined with the much softer polymer.

Figure 7 shows results for indium wire. Figure 8 shows results for the

conventional, and re-entrant copper foams combined with large void content indium

filler. Increasing the volume fraction of indium results in a much higher modulus and

loss tangent for the conventional copper foam composite in comparison with the re-

entrant copper foam composite. Figure 9 shows results for the conventional, and re-

entrant copper foams combined with low void content indium filler, respectively. The

modulus of the re-entrant copper- indium composite is higher than that of the original

copper foam; this behavior was similar to that of the copper-solder composite.

Figures 10 and 11 show stiffness-loss maps for the copper foams, filler materials

and low void content composites at 0.1 Hz, and 1 kHz, respectively. For the purpose of

comparison, a summary of the constituent volume fractions, and the moduli and loss

tangents at selected frequencies is listed in Table 3. The moduli of copper foams and

polymer composites for the conventional structure were higher than the re-entrant

structure. However, the moduli of the solder and indium composites for the conventional

structure were higher than the re-entrant structure. The loss tangents tan8 at 1 kHz

were always higher for the re-entrant copper foam composites than the conventional

copper foam composites. An exception is the large void content Indium filled composites

in which the volumetric fraction of the indium deposited in the re-entrant copper foam

was only half as that in the conventional copper foam. For the solder and indium filled

composites, large void content composites always exhibited higher tans than low void

content composites. A possible cause is that the non-affine deformation of the copper

skeleton is restrained more when additional metal filler Is introduced

Non-linearities in the composite properties with respect to the strain level were

observed. Higher strain level resulted in lower loss tangent, and lower modulus for the

composite of conventional copper foam and solder, as shown in Figure 12. A significant

increase in the loss tangent at low frequencies was also observed when the strain level

was beyond the yield point for Indium (which yields at a very low strain), as shown in
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Figure 13. For all other experiments, the strain was kept well below the yield point by

controlling the input torque.

STIFFNESS-LOSS MAPS: INTERPRETATION
Viscoelastic properties of composites corresponding to the Voigt, Reuss, and

Hashin-Shtrickman bounds on the elastic moduli (for given volume fraction of one

phase) have been determined in a companion article. Such 'bounds' enclose a region on a

stiffness-loss map, however we do not yet know if they represent bounds upon

viscoelastic properties. Nevertheless, they represent physically realizable composites

and we display them with the experimental results for the purpose of comparison.

Figures 14-17 show stiffness-loss maps based on measured viscoelastic properties

for copper foams and low void content composites at 1 kHz, along with theoretical plots

for Voigt, Reuss, and Hashin composites. The Voigt and Reuss curves embody the

assumption of only two phases, both solid, hence no voids. The effect of voids in

composites with copper, filler, and small pores was incorporated via the multi-phase

Hashin composite analysis.

Viscoelastic properties of copper foam with no filler are shown in Figure 14. The

loss tangent substantially exceeds that of pure copper at the higher frequencies. This

observation is at variance with theory which indicates the loss tangent of a solid is not

altered by the presence of voids (Christensen, 1969). That theory agrees with the Voigt

curve in Figure 14. The Reuss curve, however gives a nonzero stiffness in the presence

of voids. This is initially surprising, since in the purely elastic Reuss case one

constituent of stiffness tending to zero results in a composite with stiffness which tends

to zero. However, in the present analysis the 'void' phase was given a small loss which

contributes to IG°I. The Voigt and Reuss curves in Figure 14 were generated by assuming

a 'filler' of small stiffness and loss which were then allowed to tend to zero. The shape of

the curves in the vicinity of the point representing the stiff constituent was insensitive

to the ratio of stiffness to loss of the 'void' phase during the limiting procedure. The
relatively high tan5 experimentally obtained most likely arises from physical processes

not included in the elementary analysis. The frequency is too low for viscosity due to air

moving in the foam pores to contribute much to the loss, but surface effects in the

copper or losses due to cold work may be of interest.

Viscoelastic results of the copper-viscoelastic elastomer composites shown in Figure

15 lie within the region formed by the Voigt and Reuss curves. Figure 16 shows the

results of the low void content solder filler foams. For the re-entrant copper foam-
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solder composite, the experimentally obtained result is close to the data point predicted

by the upper Hashin curve; the loss for the conventional copper foam composite is

somewhat lower. Figure 17 shows the results of the low void content indium filler

composite. Similar results are found as those for the solder filler composites shown in

Figure 16. The composite with re-entrant copper foam has results closer to the upper

Hashin curve than that with conventional copper composite.

The composites examined in this study all substantially exceeded the (lower) Voigt

and Hashin curves in the stiffness loss map, hence they performed better (in combining

stiffness and loss) than would a composite containing spherical compliant inclusions

(Chen and Lakes, submitted). The composites with two metal phases approached the

upper Hashin curve computed allowing for the residual porosity. It is likely that the

difference between the metal-polymer composite and the metal-metal composites arises

from the degree of restraint on the non-affine unfolding of the copper skeleton, which

depends on the stiffness of the filler. None of the composites examined here is as stiff as

we would like in a structural material. The reason is that the volume fraction of the stiff

constituent was in all cases small. Nevertheless they have served as model materials to

illustrate the effect of non-affine deformation in composites made with negative

Poisson's ratio foam. Among the 'homogeneous' materials a magnetic ferrite displayed a

good combination of stiffness and loss, as shown in Table 2 and Fig. 18. It may be of

interest to incorporate such ferrites in future high-loss composites.
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CONCLUSIONS

1. A viscoelastic elastomer exhibited high loss at high frequency and two high loss

metals, solder and indium, exhibited high loss at low frequency and comparatively

high loss at high frequency.

2. Viscoelastic properties of copper-viscoelastic elastomer composites exceeded the

(lower) Voigt limit. Composite based on re-entrant foam exhibited a higher loss than

one based on conventional foam.

3. Composites of copper foam and indium or solder exhibited losses close to the Hashin

three phase upper bound with the third phase being pore space.
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TABLE 1 Specimen dimensions
Material Width(mm) Length(mm)
Elastomer 6.35 dia 2.7
Solder 3.125 dia 228.5
Indium 1.0 dia 13
Gallium 1.6 dia 1 1
Copper 0.85 dia 65
Brass 1.1 dia 30
Ferrite, non mag 0.95 square 13.5
Ferrite, magnetic 0.95 square 1 5
Composite, conventional Cu-elastomer 6.4 square 40
Composite, re-entrant Cu-elastomer 5.4 by 6.9 41
Composite, conventional Cu-solder 5.55 square 38.5
Composite, re-entrant Cu-solder 4.2 by 4.6 31.1
Composite, conventional Cu-indium 4.9 square 36
Composite, re-entrant Cu-indium 4.6 25
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TABLE 2 Viscoelastic properties of solid materials and foams

0.1 Hz lk z
Shear loss Shear loss

Volumetric Modulus tangent Modulus tangent
_Materials_ fratin _ G a tanS LGEa tan

Solidcop= 100% 40. -0.0001 40. -0.002

Sid brass 100% 24 0.0012

Conventional
cprJfam Copper: 7.61% 0.0356 <0.012 0.043 0.0068

Re-entrant
cpfam Copper: 11.3% 0.0268 <0.012 0.0391 0.0134

Polvmer(elastomer) 100% 0.000131 0.14 0.00136 0.79

Soler 100% 9.73 0.0472 13.8 0.018

Indiun 100% 2.82 0.095 4.27 0.025

Gallium 100% 12.6 0.031 16.5 0.033

Ferrite. magnetic 100% 28.8 <0.012 32.1 0.055

Ferrite. nonmagnetic 100% 30 0.012 30.5 0.021
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TABLE 3 Viscoelastic properties of composite materials

0.1 Hz
Shear loss Shear loss

Volumetric Modulus tangent Modulus tangent
._Mateialsfctin ILLa tanS GL GEa3

Conventional
copper foam Copper: 7.61%
+ PoiXmgtE. Polymer: 76.1% 0.0712 :0.012 0.0925 0.056

Re-entrant
copper foam Copper: 11.3%
+ Polymer Polymer: =100% 0.0466 <0.012 0.0838 0.167

Conventional
copper foam Copper: 7.61%
tSolder Solder: 22.1% 0.121 :0.012 0.121 0.02

Re-entrant
copper foam Copper: 11.3%
+,Solder Solder: 33.6% 0.263 0.0157 0.284 0.0366

Conventional
copper foam Copper: 7.61%
+t Solder Solder: 79.9% 9.28 0.0157 11.0 0.0112

Re-entrant
copper foam Copper: 11.3%
+,Solder Solder: 77.7% 11.9 0.0157 13.5 0.013

Conventional
copper foam Copper: 7.61%
+ inaium Solder: 23.4% 0.560 0.0314 0.639 0.0519

Re-entrant
copper foam Copper: 11.3%
+ nium Solder: 12. % 0.103 <0.012 0.115 0.021

Conventional
copper foam Copper: 7.61%
+Indium Solder: 78.5% 2.89 0.0472 3.57 0.0144

Re-entrant
copper foam Copper: 11.3%
+Indium Solder: 74.7% 4.93 0.0157 5.58 0.0149
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,LL flu.es
1. Viscoelastic behavior of copper foams. I and 0: Conventional copper foam

(volumetric fraction: 7.61%), Go = G(0.1Hz) - 0.0356 GPa. g and #: Re-entrant.

copper foam (volumetric fraction: 11.3%), Go - G(O.1Hz) = 0.0268 GPa.

2. Viscoelastic behavior of viscoelastic elastomer polymer. Go = G(0.1Hz) =

0.000131 GPa.

3. Viscoelastic behavior of composite of copper foams and polymer filler. 0 and 0:

Conventional copper foam and polymer (volumetric fraction: 76.1%), Go =

G(0.1Hz) - 0.0714 GPa. M and #: Re-entrant. copper foam and polymer

(volumetric fraction: =100%), Go = G(0.lHz) = 0.0466 GPa.

4. Viscoelastic behavior of solder. Go = G(0.1 Hz) = 9.73 GPa.

5. Viscoelastic behavior of composite of copper foams and large void content solder

filler. a and 0: Conventional copper foam and solder (volumetric fraction:

22.1%), Go - G(0.1 Hz) = 0.121 GPa. is and 4: Re-entrant. copper foam and solder

(volumetric fraction: 33.6%), Go = G(0.1Hz) = 0.263 GPa.

6. Viscoelastic behavior of composite of copper foams and low void content solder

filler. 0 and 0: Conventional copper foam and solder (volumetric fraction:

79.9%), Go - G(0.1 Hz) - 9.28 GPa. V and #: Re-entrant. copper foam and solder

(volumetric fraction: 77.7%), Go - G(0.1Hz) = 11.87 GPa.

7. Viscoelastic behavior of indium. Go = G(0.1 Hz) = 2.82 GPa.

8. Viscoelastic behavior of composite of copper foams and large void content indium

filler. i3 and 0: Conventional copper foam and indium (volumetric fraction:

23.4%), Go - G(0.1 Hz) - 0.56 GPa. il and *: Re-entrant. copper foam and indium

(volumetric fraction: 12%), Go - G(0.1Hz) = 0.103 GPa.

9. Viscoelastic behavior of composite of copper foams and low void content indium

filler. 3 and 0: Conventional copper foam and indium (volumetric fraction:

78.5%), Go - G(0.1Hz) - 2.89 GPa. g and *: Re-entrant copper foam and indium

(volumetric fraction: 74.7%), Go - G(0.1Hz) = 4.93 GPa.

1 0. Stiffness-loss map of viscoelastic behavior of matrix, fillers, and composites at 0.1

Hz.

11. StIffness-loss map of viscoelastic behavior of matrix, fillers, and composites at 1

kHz.

1 2. Nonlinearity of 1st resonant frequency and loss tangent tan8 with respect to strain

level. Conventional copper foam matrix and large void content solder composite, -

1kHz.
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1 3. Nonlinearity of shear modulus IG*I and loss tangent tan8 with respect to strain

level. Indium, 0.1 Hz.

14. Stiffness-loss map of copper and copper foams. [ : experimental data for

conventional copper foam. A: experimental data for re-entrant copper foam.

Idealized composites of copper foams at 1 kHz. x: Voigt composite, +: Reuss

composite.

15. Stiffness-loss map of copper and composites containing copper foam and viscoelastic

elastomer polymer. Idealized composites of copper foams and polymer filler at 1

kHz. x: Voigt composite, +: Reuss composite, 0: upper bound of three-phase Hashin

composite with 16.3% voids included. L- : experimental data of conventional copper

foam matrix composite. A: experimental data of re-entrant copper foam matrix

composite.

16. Stiffness-loss map of copper and composites containing copper foam and solder.

Idealized composites of copper foams and low void content solder filler at 1 kHz. x:

Voigt composite, +: Reuss composite, 0: upper bound of three-phase Hashin

composite with 11% voids included. 13 : experimental data of conventional copper

foam matrix composite. A" experimental data of re-entrant copper foam matrix

composite.

17. Stiffness-loss map of copper and composites containing copper foam and indium.

Idealized composites of copper foams and low void content indium filler at 1 kHz. x:

Voigt composite, +: Reuss composite, 0: upper bound of three-phase Hashin

composite with 14% voids included. [! : experimental data of conventional copper

foam matrix composite. A: experimental data of re-entrant copper foam matrix

composite.

1 8 Stiffness-loss map of several materials including solid materials examined in this

study.

Steel, 1 Hz, after Nowick and Berry (1972)
Copper, 600 Hz, after Nowick and Berry (1972)
Polymethyl methacrylate, (PMMA), 10 Hz and 1 kHz, after Ferry (1979)
Bone, 1-100 Hz, after Lakes, Katz, Sternstein (1979)

Hevea rubber, 10 Hz-2 kHz, after Ferry (1979)

Polystyrene, 100 Hz, 1kHz, after Ferry (1979)
Polycarbonate, 100 Hz, after Nielsen (1962)

Viscoelastic elastomer, 100, 1,000 Hz, after Shipkowitz, et. al. (1988)
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Synopsis

A theoretical study of viscoelastic properties of composites is presented with the aim

of identifying structures which give rise to a combination of high stiffness and high loss

tangent. Laminates with Voigt and Reuss structure, as well as composite materials

attaining the Hashin-Shtrickman bounds on stiffness were evaluated via the

correspondence principle. Similarly, viscoelastic properties of composites containing
spherical or platelet inclusions were explored. Reuss laminates and platelet filled

materials composed of a stiff, low loss phase and a compliant high loss phase were found

to exhibit high stiffness combined with high loss tangent.

INTRODUCTION
Viscoelastic materials can be of use in the damping of mechanical vibration and in the

absorption of sound. The loss tangent, or tangent of the phase angle 8 between stress and

strain in sinusoidal loading, is a useful measure of material damping. Most materials

used in structural applications, however, have small loss tangents. Conversely,

materials with high loss tangents tend to be compliant, hence not of structural interest.

Fig. 1 contains a stiffness-loss map (plot of the absolute value of the dynamic modulus

vs loss tangent) for some representative materials. Compliant, lossy materials are used

as layers over stiff materials in various applications; nevertheless a stiff material with
high loss would be of use in structural damping of noise and vibration. We consider in

this article the possibility of making composite microstructures providing high

stiffness and high loss.
A possible avenue for making high loss composites is to make use of non-affine

deformation. This is in contrast to affine deformation in which the particles in the solid
move in a way corresponding to a uniform strain plus a rotation in a continuum. The

negative Poisson's ratio materials developed by Lakes (1987) exhibit this property in

that the foam cells unfold during deformation (Lakes, 1991; Chen and Lakes, 1991).
Non-affine deformation can result in high viscoelastic loss in a composite if the phase

which has the highest loss experiences a larger strain than does the composite as a

whole.

Elastic properties of multi-phase composite materials have been studied extensively.
Of these studies, the ones most relevant to the present work are those dealing with

bounds on the elastic behavior and predicted properties of composites of relatively

simple structure. The upper and lower bounds of stiffness of two phase and many phase
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composite materials have been obtained in terms of volume fraction of

constituents(Hashin, 1962; Hashin and Shtrickman, 1963). Bounds and expressions for

the effective elastic moduli of materials reinforced by parallel hollow circular fibers in

hexagonal or random arrays have also been derived by a variational method (Hashin,

1962). Furthermore, bounds on three independent effective elastic moduli of an n-phase

fiber reinforced composite of arbitrary transverse phase geometry, plane strain bulk

modulus, transverse shear modulus and shear modulus in plane parallel to fibers, have

been derived in terms of phase volume fractions(Hashin, 1965a). For viscoelastic

heterogeneous media of several discrete linear viscoelastic phases with known stress-

strain relations, it was shown that the effective relaxation and creep functions could be

obtained by the correspondence principle of the theory of linear viscoelasticity (Hashin,

1965b). In some cases explicit results in terms of general linear viscoelastic matrix
properties was given, and thus permitting direct use of experimental information

(Hashin, 1966). In a review by Ahmed and Jones (1990) of particulate reinforcement

theories for polymer composites, it was concluded that the macroscopic behavior was

affected by the size, shape, distribution, and interfacial adhesion of the inclusions. This

article makes use of some of these results for elastic composites to explore accessible
regions of the stiffness-loss maps of the materials.

ELASTIC AND VISCOELASTIC PROPERTIES OF COMPOSITES
For the simplest case of a two-phase composite, the Voigt and Reuss composites

described below represent rigorous upper and lower bounds on the Young's modulus for a

given volume fraction of one phase. The Hashin-Shtrickman composites represent upper

and lower bounds for isotropic elastic composites. Viscoelastic composites containing

spherical or platelet inclusions are also considered. Results obtained via the

correspondence principle are plotted as "stiffness-loss maps" in the subsequent section.

Voigt composite

Let phase 1 be stiff; let phase 2 be high loss. The geometry of the Voigt model

structure is shown in Figure 2. The composite can contain laminations as shown in
Figure 1(a) or it can be made of continuous fibers in Figure 1(b); in either case the

strain in each phase is the same. For an elastic material with one of these structures,

the Voigt relation is
Ec - E1 V1 + E2V2 ,

in which Ec, E1 and E2 refer to the Young's modulus of the composite, phase 1 and phase

2, and V1 and V2 refer to the volume fraction of phase 1 and phase 2 with V1 +V2-1. The



4

Voigt relation for the stiffness of an elastic composite Is obtained by recognizing that for

the given geometry, the strain in each phase is the same; the forces in each phase are

additive.

By the correspondence principle (Hashin, 1970, Christensen, 1980), the elastic

relation can be converted to a steady state harmonic viscoelastic relation by replacing

the Young's moduli E by E*(io)) or E*, in which o is the angular frequency of the

harmonic loading. This procedure gives

Ec* - EI*V 1 + E2*V2 (1)
with E= E' + I E" and loss tangent tan8 = E/E. Taking the ratio of real and imaginary

parts, we obtain the loss tangent of the composite tan Sc = Ec"/Ec'.

V1 tan81 + V2 I E' tan82

tan 8c - E (2)V 1 + EEI-, 2

Reuss composite
The geometry of the Reuss model structure is shown in Figure 1(c); each phase

experiences the same stress. For elastic materials, 1/Ec = V1/E1 + V2/E2 . Again using

the correspondence principle, the viscoelastic relation is obtained as

V V23)
Ec 7 + E2*

Again separating the real and imaginary parts of Ec°, the loss tangent of the composite

tan 8c is obtained: g S

(tan81 +tan82 )[V1 +V2 7- (1-tan81 tan8 2)[V1 tan8 2 +V2tan81 -_I

tan 8c - E2E, (4)
-tan8 V tan82)V1 +V 2  (tan81 +tan82 )[V 1 tan82 + V2 tan8 1

(1tn~ -tan81 ) an2 1ta

Hashin-Shtrickman composite:
arbitrary two-phase geometry
Allowing for 'arbitrary' phase geometry, the upper and lower bounds on the elastic

moduli as a function of composition have been developed using variational principles. The
lower bound for the shear modulus GL of the composite was given as (Hashin and

Shtrickman, 1963)
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GL - G2 + 1 _V1(5)6(K2 +2G 2 )V2

G 1 -G2 + 5(3K2 +4G 2 )G2

in which K1, G1 and V1, and G2 and V2 are the bulk modulus, shear modulus and volume
fraction of phases 1, and 2, respectively. Here GI >G2 , so that GL represents the lower

bound on the shear modulus. Interchanging the numbers 1 and 2 in Equation(S) results
in the upper bound GU for the shear modulus.

As for viscoelastic materials, we again apply the correspondence principle. The
complex viscoelastic shear moduli of the composite GL* and Gu• are obtained as

GL. - G*+ 1, (6)
1 6(K 2 +2G 2 °)V2

Gl*.G 2 * + 5(3K 2 *+4G 2 °)G 2
*

and

GU*- G1• + V2 (7)
1 6(K1*+2Gl*)V(

G2 -Gl* ' 5(3K 1 *+4Gl*)Gl*

In these cases the loss tangent is more complicated to write explicitly, so it is more

expedient to graphically display computed numerical values.

Hashin transversely isotropic fiber reinforced composites
This case is of interest since It allows more than two phases, a situation applicable to

the analysis of experimental results in a companion article. For two phases the results

are almost identical to the arbitrary phase geometry case considered above. The shear
modulus of elastic multi-phase transversely isotropic fiber reinforced composites of

arbitrary transverse phase geometry, can be bounded from below and above in terms of
phase moduli and phase volume fractions. The lower and upper bo ,nds on the shear

modulus m(-) and m(+) were given for elastic composites (Hashin, 1965a) as

- + 2G,(K1 +G1 ) r=n (Gr'Gi)Vr ,1- 1 8K1+2Gj I~= Gl+KIGiI(Kl+2GI)]J (
and

2 Gn(Kn+Gn) {r-n-1 (Gr'Gn)Vr I-1

m(+) -=Gn + Kn+2Gn { [r. G +KGn(K+2G)J -1 (9)
n n ra1 r nn(n n

in which n is the number of the phases, G1 and K1 are the shear and bulk moduli of the

most compliant phase, Gn and Kn are the shear and bulk moduli of the stiffest phase. r is
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a free index representing the phase number; phases are numbered in order of increasing

stiffness.

On the basis of the correspondence principle, corresponding results for the complex

shear modulus (not necessarily bounds) of the composites are again obtained by
replacing m(-), m(+), G1 , K1 , Gr and Gn by GL*, GU*, G1 . , K1. , Gr* and Gn* in

Equations(8) and (9), respectively. The loss tangent again is complicated to write

explicitly, so it is graphically displayed using computed numerical values.

Spherical particulate inclusions
For a small volume fraction VI = 1 - V2 of spherical elastic inclusions in a

continuous phase of another elastic material, the shear modulus of the composite Gc was

given as(Christensen, 1979)

15(1-V 1 ) (1 - V2
1c 1 G 2 (10)

G1 7 - 5 V1 +2(4 - 5vj) G1

In which v1 is the Poisson's ratio of phase 1, and phase 1 and phase 2 represent the

matrix material and the Inclusion material respectively.

Using the correspondence principle again and assuming there is no relaxation in

Poisson's ratio, Equation(10) becomes

Gc G1I 15(1"-V1) (GI- G2*)V2°(

7 - 5v 1 +2(4 - 5v)G2G 1"

for the complex shear modulus of the composite material. The loss tangent again is

complicated to write explicitly, so it is graphically displayed using computed numerical

values.

Platelet inclusions
For a dilute suspension of platelet elastic inclusions of phase 2 in a matrix of phase

1, the shear modulus of the composite Gc was given as(Chnstensen, 1979)

G0 - GI + V2 (G2 -G! ) r 9K 2 +4(G 1 +2G 2 ) G6-115 L + 6 ( 12 )
K 2 + tG 2 n2 

b e o e

Again, using the correspondence principle, Equation(12) becomes
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V2 (G2 "GI) [ 9K 2 *+4(G1 +2G 2 ) G*
Gc* G + 15 2 + G* (13)

K 2 * + 1-G2*

for the complex shear modulus of the composite materials.

As for procedure, we remark that although Equations (5) to (13) were developed for

the shear modulus of the composite, the shear moduli G* were replaced by the Young's

moduli E* in the figures for comparison with Fig. 1. The Voigt and Reuss relations given

by Equations (1) and (3) apply to G* as well as to E*. The actual relationship between

E* and G* and the properties of the constituents of a composite is simple only for certain

phase geometries. For example, for some common phase geometries, a Poisson's ratio of

0.3 for each phase gives a Poisson's ratio close to or equal to 0.3 for the composite.

However for some phase geometries, a constituent Poisson's ratio of 0.3 can give rise to

a negative Poisson's ratio in cellular solids with one phase void (Lakes, 1987) or in
unusual laminates (Milton, in press). The calculations are on the basis that V1 +V2 =1

except that V1 +V2 =0.8 for the multi-phase Hashin elastic bound, for which 20% void

by volume fraction is assumed to be contained as a third phase in the composite.

RESULTS AND DISCUSSION
Results are plotted as stiffness-loss maps (plots of 1E*1 Yj tanS) as shown in Figures

2-4.

Figure 2 shows predicted properties of composites containing phases which differ

greatly in properties. Steel is considered as phase 1, with lE1"1=200 GPa, tans1 =

0.001 and and a viscoelastic elastomer as phase 2, with 1E2 *1=0.020 GPa, tan82 = 1.0.

The graph was enlarged in the vicinity of 100% phase 1 and shown in Figure 3 for

clarity. A small volume fraction of phase 2 results in a large increase in loss with little

reduction in stiffness so that the Reuss structure permits higher losses than the Voigt

structure. However, in the Reuss structure each phase carries the full stress, so that a

composite of this type will not be strong if, as is usual, the soft phase 2 is weak.

As for 'bounds' on the properties, the curves for the Voigt and Reuss composites

enclose a region in the stiffness-loss map, as do the curves for the upper and lower

Hashin-Shtrickman composites. It is tempting to think of these curves as 'bounds' on the

viscoelastic behavior, however such a surmise has not been proven. They represent

extremes of composites which can be fabricated, however we do not yet know if they

represent true bounds. Roscoe (1969) has mathematically established bounds for the

real and imaginary parts E' and E" of the complex modulus of composites and has shown

them to be equivalent to the Voigt and Reuss relations. Therefore the stiffness, expressed
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as IE* of the composite is bounded from above by the Voigt limit and cannot exceed the

stiffness of the stiff phase. This is not quite the same as establishing bounds for a

stiffness-loss map since it is not obvious whether a maximum in tan8 - E/E' could be

obtained simultaneously with a maximum in E° . In particular, we can construct tan 8
c -

E"voigt/E'reuss > E"reuss/E'reus and be within the bounds of Roscoe. We do not yet know

if such a composite Is physically realizable.

In the stiffness-loss map, the lower and upper two-phase Hashin composites behave

similarly to the Voigt and Reuss composites, respectively. This is in contrast to the usual

plots of elastic stiffness vs volume fraction, in which the Hashin bounds can differ

greatly from the Voigt/Reuss ones. As for the physical attainment of the the Voigt and

Reuss composites, simple laminates can be made as in Fig. 1, but these are anisotropic.

Isotropic composites which attain the Voigt or Reuss moduli are not considered to be

attainable. Isotropic polycrystals attaining the Voigt or Reuss bounds for the bulk

modulus are also possible (Avellaneda and Milton, 1989) at the expense of some added

structural complexity.

For the three-phase Hashin structure with 20% void content in the composite, the

lower curve reduces to zero and is not shown in the graph; the upper bound lies close to

the Voigt curve with 20% to 40% lower stiffness as shown in Fig. 2.

The composite containing soft spherical inclusions is also found to behave similarly

to the Voigt composite in that a small volume fraction of soft, viscoelastic material has a

minimal effect on the loss tangent, though it does reduce the stiffness. As for the

composite containing soft platelet inclusions, it is found that the results are similar to

those of the Reuss structure. A small volume fraction of platelet inclusions as phase 2

results in a very large increase in loss tangent without any significant reduction in the

stiffness. However, soft platelets resemble penny-shaped cracks in the matrix, so that

such a composite would be weaker than the matrix, particularly if the matrix were

brittle.

Figure 4 shows predicted properties of composites containing phases which do not

differ so much in properties as steel and viscoelastic elastomers. Copper as phase 1,
with IE1 °1,117 GPa, tan8 1 . 0.002 and indium as phase 2, with IE2 "1=10.8 GPa,

tan82-0.025 (at 1 kHz) were used for this investigation. Observe that the shape of this

stiffness-loss map differs from the case of the polymer-metal composite. The

implication of this difference in shape is as follows. If the constituents differ by orders

of magnitude in stiffness and loss, then the Reuss and platelet composites are orders of

magnitude superior to the Volgt and spherical inclusion composites in achieving high

stiffness and high loss. If the constituents do not differ so much in their properties,
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their composites of various structures do not differ as much either. Composites

containing a stiff, low loss material (such as a metal) and a small amount of compliant,

high loss material can exhibit a stiffness close to that of the metal, as well as high loss

superior to that of a metal-metal composite.

An interesting aspect of the Reuss and platelet composites which give the highest loss

(for given stiffness) is that they exhibit highly nonuniform strain fields. The strain in

the soft, lossy phase is much larger than the strain in the stiff phase. This is in contrast

to the Volgt composite in which the strain in each phase is the same. The re-entrant

foams (Chen and Lakes, 1989, in press) with a negative Poisson's ratio also exhibit

non-affine deformation of a more complex nature in that the foam cells unfold as the

foam is deformed.

CONCLUSIONS
1. In a stiffness-loss map, the upper and lower two-phase Hashin composites behave

similarly to the Voigt and Reuss composites, respectively.

2. Reuss laminates and platelet filled materials based on a stiff, low loss phase and a

compliant high loss phase were found to exhibit high stiffness combined with high

loss tangent. However, in the Reuss structure each phase carries the full stress, so

that a composite of this type will not be strong if, as is usual, the compliant phase is

weak.
3. A composite containing soft lossy spherical inclusions in a stiff matrix behaves

similarly to the Voigt composite: low loss and a reduction in stiffness.

4. Composites containing a metal and a small amount of compliant, high loss polymer

can in principle exhibit a stiffness close to that of the metal, as well as high loss.
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ist ofLfgures
1. Stiffness vs loss tangent for some representative materials at or near room

temperature.

Steel, 1 Hz, after Nowick and Berry (1972)

Copper, 600 Hz, after Nowick and Berry (1972)

Polymethyl methacrylate, (PMMA), 10 Hz and 1 kHz, after Ferry (1979)

Bone, 1-100 Hz, after Lakes, Katz, Sternstein (1979)

Hevea rubber, 10 Hz-2 kHz, after Ferry (1979)

Polystyrene, 100 Hz, 1kHz, after Ferry (1979)

Polycarbonate, 100 Hz, after Nielsen (1962)

Viscoelastic elastomer, 100, 1,000 Hz, after Shipkowitz, et. al. (1988)

2. (a) Laminated Voigt structure.

(b) Fibrous Voigt structure.

(c) Reuss structure.

3. Stiffness-loss map for composites of steel as phase 1 and viscoelastic elastomer as

phase 2. x: Voigt curve, +: Reuss curve, .: two-phase Hashin curve, 0: upper curve

of thr ,a-phase Hashin composite with 20% voids as one phase. 0: composite with

phase 2 as dilute spherical inclusions. j : composite with phase 2 as dilute platelet

inclusions.

4. Stiffness-loss map for composites of steel as phase 1 and viscoelastic elastomer as

phase 2; expanded plot of upper left portion of Fig. 3. x: Voigt curve, +: Reuss

curve, 0: upper curve of three-phase Hashin composite with 20% voids as one

phase. 0: composite with phase 2 as dilute spherical inclusions. 0 : composite with

phase 2 as dilute platelet inclusions.

5. Stiffness-loss map for composites of copper as phase 1 and indium as phase 2. x:

Voigt bound, +: Reuss curve, *: two-phase Hashin curve. 0: upper curve of three-

phase Hashin composite with 20% voids as one phase. 0: composite with phase 2 as

dilute spherical inclusions. t3 : composite with phase 2 as dilute platelet inclusions.
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Holographic study of conventional and
negative Poisson's ratio metallic foams:
elasticity, yield and micro-deformation
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Department of Mechanical Engineering, and * also Department of Biomedical Engineering, and
Center for Laser Science and Engineering, University of Iowa, Iowa City, IA 52242, USA

An experimental study by holographic interferometry is reported of the following material
properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's
ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation.
The Young's modulus and yield strength of the conventional copper foam were comparable to
those predicted by microstructural modelling on the basis of cellular rib bending. The re-entrant
copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on
the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed
holographically in both foam materials.

1. Introduction Holographic interferometry provides interferometric
Conventional foams, like other ordinary materials, accuracy for deformation measurements of rough sur-
exhibit a positive Poisson's ratio, that is, they become faces; this feature is of particular use for cellular solids.
smaller in cross-section when stretched and larger For deformation mechanisms and structure-related
when compressed. Recently, the invention of negative behaviour, rotational degrees of freedom were exam-
Poisson's ratio foams was reported [1-3]. Foam ma- ined in earlier articles [7, 8]. The method involved
terials based on metal and several polymers were inference from non-classical size effects in the bending
transformed so that their cellular architecture became and torsion rigidity as determined using a micro-
re-entrant, i.e. with inwardly protruding cell ribs. mechanics apparatus. Moreover, dispersion of stand-
Foams with re-entrant structures exhibited negative ing waves and cut-off frequencies in torsional
Poisson's ratios as small as - 0.7, as well as greater vibration were observed for the foam materials [9].
resilience, than conventional foams. These non-classical phenomena were attributed to the

Material properties of conventional and re-entrant material microstructure in a structural view.
copper foamq 1 ve been determined from tiniaxial The present study applies double-exposure holo-
compression tests using an MTS materials testing graphic interferometry to determine the material
machine [3]. Engineering stress-strain graphs were properties (Young's moduli, Poisson's ratios, and
extracted from load-displacement data. The Poisson's yield behaviour) of conventional and negative
ratios of specimens in this series were determined from Poisson's ratio foam, as well as to explore the non-
displacement measurements of high magnification affine deformation associated with movements of the
video tapes of the tensile tests. However, other microstructure. Affine deformation is locally equi-
methods, which complied with ASTM standards, of valent to a superposition of a strain and a rotation.
measuring Poisson's ratio were tried and found un-
suitable due to the inherently rough, porous surface of
the foams. 2. Materials and methods

The laser interferometric method has been pres- Bending experiments were conducted upon conven-
ented in the literature for determining the displace- tional and re-entrant copper foam specimens at room
ment field on the surface of a specimen and therefore temperature. The conventional copper foam used was
the specimen's properties. The hyperbolic contour open cell with density 0.795 g cm - , solid volume frac-
lines on the lateral surface of a bent specimen can be tion 0.089, and cell size 0.4 mm. The copper foam was
viewed interferometrically and used to determine the transformed into re-entrant structure by successive
specimen's Poisson's ratio [4]. The deformation of an applications of small increments of plastic deforma-
object can be investigated from the fringes on a holo- tion in three orthogonal directions, as desribed earlier
gram film by means of double-exposure holographic [I, 3]. The density of the re-entrant copper foam
interferometry [5]. It has also been concluded that the tested here was 2.43 g cm- ' with a permanent volu-
laser interferometry technique offered a very useful metric compression ratio of approximately 3. and
and reliable tool to determine the Poisson's ratio of solid volume fraction 0.27. The foams were machine
orthotropic fibre reinforced plastics (FRP) plates [6]. finished to obtain the desired surface smoothness. The
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dimensions of the conventional copper foam specimen front. The rationale was to improve the quality of the
were 9 mm by 15 mm in cross-section and 34 mm in Haidinger fringes and achieve a wider exit cone of
length; and of the re-entrant specimen, 6 mm by projected rays. Agfa 8E75 holographic film was used,
6.5 mm in cross section and 26 mm in length. was developed in Kodak D19 and bleached in am-

The lower end of each specimen was cemented firm- monium dichromate bleach to increase the brightness.
ly on a precision tilt/rotation base. The upper speci- The images were viewed in laser light of 633 nm
men end was cemented to an aluminium cantilever wavelength, the same as was used for making the
beam upon which weights were placed to Achieve holograms.
bending. The aluminium beam was sufficiently long
for it to be possible to neglect the axial compression
caused by the weight in comparison with strain due to 2.1. Bending test: zero-order fringe
bending. The specimen was thus deformed by a nearly interpretation
pure bending moment. The fringe pattern was centred The zero-order fringe method (ZF) [5] was used to
to facilitate the determination of Poisson's ratio from obtain the specimen's Young's modulus and Poisson's
the hyperbolic or elliptical fringe pattern. This was ratio, for study of residual strain due to yielding, and
done by tilting and rotating the base between the for study of inhomogeneous deformation. The relation
holographic exposures. between the displacement vector, a, and the fringe

The specimens and the holographic components I
were installed on a research-grade damped table top order, n, at a point, P, on the illuminated surface of the

supported upon four pneumatic isolation mounts. The specimen is given by

laboratory ventilation was shut off during the experi- nX = u'(k - h) (1)
ments to eliminate air currents and noise. A beam in which X is the wavelength of the light, k is the unit
from a 15 mW helium-neon laser was divided by vector from the object to the observer's eye, and h is
a beamsplitter into an object beam and a reference thj unit vector from the Iight source to the obect. The
beam. The following configuration was used for zero- grigeor from the to themet ve

order fringe analysis described below. Image plane fringe order n represents the total displacement vector

transmission holograms were made of the tensile side of points on the specimen surface. The centre of the

of the bent specimen via a unity magnification config- fringe pattern was the location where the lateral move-

uration using a six-element coated f/1.2 lens system of ment was zero.
focal length 150 mm. For the purpose of simplifying Equation I is simplified if the illumination andthe calculation, the reference and reconstruction observation directions are arranged to be collinear in

beams were collimated. Moreover the object illumina- the z-direction perpendicular to the specimen surface.
beam we collimated andodree pereculnar This was achieved in the experiment via the configura-tion beam was collimated and directed perpendicular tion shown in Fig. !. Collimated object illumination

to the specimen surface by a plate beamsplitter, as tion so th at oc illumination

shown in Fig. 1. Each exposure was about 3 s, was used so at th ondition diot

achieved using a digitally controlled shutter. Further vary with position. Under these conditions, Equation

image plane holograms were made, without specimen I becomes

tilt, for Haidinger fringe analysis using an f/0.7 lens nX
system consisting of two f/1.4 camera lenses of 50 mm (2)
focal length and seven elements each, placed front to in which u2 is the displacement of point P in the

:-direction (out-of-plane, along the line of sight) and
can be obtained from the fringe order n.

Object illumination The macroscopic strain, e, on the lateral surface
of the beam as a result of bending deformation was
given as [10]

2y
SReference C = u. (3)

b, a in which y is the distance from the point, P, at which
Object Beam the strain is measured to the neutral surface of the

s p itter beam or one-half of the beam thickness for a rectangu-
lar cross-section specimen, and L is the distance be-
tween point P and the centre of the fringe pattern. The
Young's modulus, E, of the specimen is defined as

Lens E = a/, or, from the elementary theory of bending in
classic.il elasticity

ML"

Holographic 2u.I

plate in which M is the bending moment, and I is the

Figure I Configuration for image plane holography with collimated moment of inertia of the cross-sectional area of the
illumination along the optic axis. specimen.
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The fringe pattern on the specimen's surface can
also be used for determining the specimen's Poisson's
ratio, v. The contour lines of constant u. were given,
based on classical elasticity, as [4]

Z2 - vy 2 = constant (5)

The contour lines of the lateral displacement field of Laser beam
the specimen, or the observed interference fringes, are
therefore hyperbolae for specimens of positive Pois-
son's ratio and ellipses for those of negative Poisson's
ratio, respectively. The Poisson's ratio, v, was also
given as Image plane Sc reen

v = tan 2X (6) hologram

in which 22 is the angle between the asymptotes of the Figure 2 Projection of fringes from an image point in the Haidinger
hyperbolae as given by Equation 5. fringe method.

Holographic exposures were made of bent speci-
mens at progressively larger loads, with the aim of
exploring the onset of inhomogeneous deformation
associated with the microstructure as manifested by size less than 0.2 mm diameter, in the direction of the
irregularity and breakup of the fringe pattern. original reference beam. Diffracted light formed a pat-

This holographic interferometry and data reduction tern of fringes which was projected upon a ground

scheme was first verified by tests upon a PMMA glass, as shown in Fig. 2. The light beam was slowly

(polymethyl methacrylate or Plexiglass) specimen, scanned across the specimen and inferred displace-
which has independently determined properties [I,]. ments of nearby points were compared to determine
The PMMA specimen was 9 mm by 12.5 mm in cross- the micro-strain. In this experiment, non-affine defor-
section and 88 mm in length. White paint was sprayed mation manifests itself as micro-strain differing from
on the illuminated surface of the PMMA specimen for macroscopic strain.

the purpose of maximizing the diffuse light reflection.

3. Microstructural analysis
2.2. Yielding test The mechanical properties of foams can be related to

A holographic exposure was made of the specimen the properties of the cell material and geometry [13].
without any bending load. The bending load was then For conventional open cell foam [13]

applied for 30 s and removed. The second exposure E ( )2

was taken 30 s later after the load was removed. If E= (8)
yielding has occurred, there will be some residual
strain, resulting in fringes in the hologram. Based on on the basis of simple bending of the cell ribs, in which
a series of holograms taken with increasing loads, the E and p are the Young's modulus and mass density of
yield strength of the specimen was determined, the foam, and E, and p, are the Young's modulus and

mass density of the solid of which the foam was made.
Cellular materials can collapse. Plastic collapse oc-

2.3. Study of non-affine deformation curs when the moment exerted on the cell ribs exceeds
Non-affine deformation was studied both by the zero- the fully plastic moment, creating plastic hinges. The
order fringe method and by the Haidinger fringe plastic collapse stress, or the yielding strength of the
method. In the zero-order fringe method, in- foams was given as [13]
homogeneous deformation of the non-affine type 3t2
manifests itself as a bumpiness or breakup of the - 0 3 (9)
fringes covering the specimen. The optical system in a°s " \ PJ )
Fig. I, used for zero-order fringe analysis, is sensitive in which a, and ay, are the yield strength of the
to out-of-plane deformation, perpendicular to the spe- foam, and the solid of which the foam was made,
cimen surface, so that is also the sensitivity direction respectively.
for non-affine deformation. The Haidinger fringe The properties of solid copper were taken as
method discloses the vector displacement of an indi- E, = 119000 MPa, p. = 8.93 gcm- 3,and a, - 62 MPa
vidual object point [5, 12]. The x component of [13, 14]. Substitution of the foam densities mentioned
in-plane displacement, U, is given by in the previous section in Equations 8 and 9 yielded

theoretical values of the foam properties. The Young's
U, = k/(7) modulus, E, and yield strength, a,, of the conventional

in which X is the wavelength of light and 4, is the copper foam were predicted to be 943 and 0.49 MPa,
x component of angular spacing, in radians, of the respectively. The prediction of the properties of the
projected fringes; similarly for the y-direction. In this re-entrant foams was not attempted because Equa-
method, the corresponding image point was illumin- tions 8 and 9 are only applicable to conventional
ated by a concentrated laser beam, focused to a spot foams with straight cell ribs.
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Figure 5 Yielding of (0) conventional and (A) re-entrant foam in
bending. Residual strain versus applied strain, both in units of

Figure 3 Fringe pattern of PMMA by holographic interferometry, microstrain.
bending test.

4. Results and discussion closer to 0.3, but there is considerable variation [13];
A typical fringe pattern of the PMMA specimen is indeed, a different density copper foam [3] had a Pois-
shown in Fig. 3. Analysis of the fringe orders at differ- son's ratio of 0.4. The Young's modulus, E, was found
ent locations via Equation 3 disclosed that uniform to be approximately 900 MPa, at a macroscopic stress
strain was obtained on the specimen surface in 0.15 M Pa and strain 0.000 17. The experimental value
bending. The Young's modulus, E, was obtained to be of E agreed reasonably well with 943 MPa predicted
approximately 2.6 GPa, and the Poisson's ratio, v, was from Equation 8 in the previous section. Fig. 5 shows
obtained to be 0.33 from Equations 4, and 6. respect- the residual strain plotted versus the applied strain for
ively. The experimental values of E and v were in good conventional copper foam obtained by the yielding
agreement with those independently determined [I I]. tests. The yield strength, ay, of the conventional cop-
The fringes of the hyperbolic contour lines remained per foam was found to be approximately 0.42 MPa.
of high contrast up to high fringe density correspond- The yield strength predicted by Equation 9 was
ing to a bending strain 0.00084. Consequently, the 0.49 MPa. The agreement is considered satisfactory in
PMMA did not exhibit any inhomogeneous deforma- view of the fact that a book value for the 0.2% yield
tion, as expected in view of classical elasticity or vis- strength of solid copper was used in the calculation.
coelasticity. The yield strain of the foam was 0.00047.

Fig. 4 shows the fringe pattern of the conventional The fringe pattern for the foams became less clear as
copper foam. These fringes represent hyperbolic con- the load level increased. On close examination, the
tour lines which show the anticlastic curvature of fringes were seen to become progressively more
a positive Poisson's ratio material, just as the case bumpy with increase in load. The clarity of the fringe
with PMMA. The measured asymptotic angle, ot, was pattern was represented quantitatively by dID, in
substituted into Equation 6 to obtain the Poisson's which d is the width of the pattern of bumps of two
ratio, v, of the conventional copper foam as 0.25. neighbouring fringes and D is the overall fringe width,
Conventional foams usually have Poisson's ratios and is shown in Fig. 6, with an estimated 10% error

&60-
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40 "..

0 201
0.0002 0.0004 0.0006 0.0008 0.0010

Macroscopic strain

Figure 6 The clarity of the fringe pattern versus the macroscopic
Figure 4 Fringe pattern of conventional copper foam in bending by strain. . bending test. I- U -) Conventional copper foam, ly) the
holographic interferometry, density 0.795 gcm -with solid volume yield point. (-- - -) Re-entrant copper foam, IV) the yield point.
fraction 0,089. I)) PMMA.
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Figure 7 Fringe pattern of negative Poisson's ratio copper foam in bending by holographic interferometry, density 2.43 gcm- 3 with solid
volume fraction 0.27. (a) Lower load. (b) higher load.

range. As progressively higher loads were applied to case the strain for total fringe breakup and the strain
conventional foam, fringes began to become bumpy at for yield were comparable. Nevertheless, the onset of
strains of 0.000 062 and were very broken up at strains fringe bumpiness or breakup occurred well below the
of e = 0.000 32-0.000 37. Complete fringe breakup oc- yield point, as shown in Fig. 6.
curred at strains below the yield strain and so cannot The loss of fringe clarity in the foams at higher loads
be a result of yielding. was not a single loss of contrast associated with

Fig. 7 shows the fringe pattern of the re-entrant a hologram of a field of homogeneous strain and
copper foam. The fringe pattern of elliptical contour rotation [5] viewed through a large pupil: there was
lines indicated that the Poisson's ratio of the re- no such effect in the PMMA which is a homogeneous
entrant copper foam was negative. The Young's material. The fringes in the foam became noticeably
modulus. E, was obtained to be approximately bumpy before they broke up. The effect is attributed to
480 M Pa. at a macroscopic stress of 0.032 M Pa and inhomogeneous deformation associated with the
strain 0.000 67. This result is consistent with the fact microstructure, specifically a non-affine deformation
that the Young's modulus of the foam materials has which cannot be described as a superposition of
previously been found to be reduced by re-entrant homogeneous strain and rotation. Quantitative
transformation [3]. The Poisson's ratio, v, for this measures of such inhomogeneous deformation may be
specimen was obtained to be - 0. 11 lower density defined as follows: the ratio r of micro-strain to macro-
copper foam [3] in simple compression had a strain r = (8 /dc.n)/macro; and a micro-deforma-
Poisson's ratio of - 0.4. Fig. 6 shows the residual tion characteristic length I = 8/Ea..,. in which 8 is the
strain as it depends on the applied strain of the re- inhomogeneous micro-deformation and d,,,, is the cell
entrant copper foam. The yield strength was deter- size. In the present zero-order fringe experiments the
mined to be 0.35 MPa by the yielding tests, and the fringes become totally fragmented when the micro-
yield strain was 0.000 72. deformation over one cell is one fringe or half

The predictions of the properties of the conven- a wavelength of red light, so 6 = 0.3 gm. The cell size
tional copper foams by Equations 8 and 9 on the basis is 0.4 mm for conventional foam and 0.4 mm/(3)1 3

of solid volume fraction were obtained with some for re-entrant foam. Consequently, for conventional
structural assumptions. However, the yield strength, foam, r3,,. , = 2.1. 1

m, = 0.86 mm; for re-entrant foam,
(Y, of the foam materials can also be obtained by r,,s.±. = 1.3. 1m = 0.38 mm. The non-affine motion
substituting Equation 8 into Equation 9 to obtain disclosed by these experiments is an average value

y/o,,s = 0.3(E/E,) ' with the solid volume fraction perpendicular to the specimen surface.
eliminated. With E = 480 MPa substituted, the yield The Haidinger fringe experiments disclosed largely
strength a,, for re-entrant copper foam was calculated in-plane motions along the specimen long axis. The
from this expression to be 0.3 M Pa. This was compar- calculated micro-strains ranged from - 0.004 to 0.004
able to 0.35 M Pa obtained by the yielding tests on the for a macro-strain of 0.000 79, for the conventional
re-entrant copper foam even though Equations 8 and copper foam: and from - 0.0013 to 0.0028 at a macro-
9 individually do not apply to re-entrant foam. strain of 0.0008 for the re-entrant copper foam. The

Fringes in the re-entrant foam began to get bumpy ratios of the maximum micro-strain to the macro-
at a macroscopic strain of 0.00021 and were totally strain were thus determined to be rm.. u = 5.1. and 3.5
broken up at a strain of from 0.000 63-0.001. In this for the conventional copper foam. and the re-entrant
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copper foam, respectively. The non-affine motion dis- 2. The Young's modulus, E, yield strength, G., and
closed by these experiments is a maximum value par- Poisson's ratio, v, of the conventional and negative
allel to the specimen surface. Poisson's ratio copper foams were determined in

The inhomogeneous, non-affine micro-deformation bending tests by the holographic interferometry. The
observed in the foams has several interesting implica- Young's modulus of the conventional copper foam
tions. For example, such deformation, as well as a was found to be twice that of the corresponding re-
local rotation of points has been incorporated into entrant negative Poisson's ratio foam. The yield
generalized continuum theories known as "micro- strength was approximately the same for the conven-
structure" [15] or "micromorphic" [16] elasticity. In tional and negative Poisson's ratio copper foams.
comparison, Cosserat solids [7, 8] admit rotations 3. The Young's modulus and yield strength of the
and translations, and classically elastic solids admit conventional copper foam were comparable to those
only translation of points. A material obeying general- predicted by microstructural analysis based on cellu-
ized continuum theory may exhibit stress concentra- lar rib bending.
tion factors which are less or greater than classical 4. Inhomogeneous, non-affine deformation was in-
values, depending on the values of the extra material ferred from the bumpiness and breakup of the holo-
constants prescribed by the theory [17]. The micro- graphic fringes with increasing load. The effects were
deformation and local rotation degrees of freedom are larger in the conventional foam.
therefore intimately connected with the toughness of
these materials. The micro-deformation is, moreover,
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Deformation mechanisms in negative Poisson's
ratio materials: structural aspects

R. LAKES
Departments of Biomedical Engineering, and Mechanical Engineering, and Center for Laser
Science and Engineering, University of Iowa, Iowa City, 1A 52242, USA

Poisson's ratio in materials is governed by the following aspects of the microstructure: the
presence of rotational degrees of feedom, non-affine deformation kinematics, or anisotropic
structure. Several structural models are examined. The non-affine kinematics are seen to be
essential for the production of negative Poisson's ratios for isotropic materials containing
central force linkages of positive stiffness. Non-central forces combined with pre-load can also
give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-
central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio.
Toughness and damage resistance in these materials may be affected by the Poisson's ratio
itself, as well as by generalized continuum aspects associated with the microstructure.

1. Introduction springs can also exhibit negative Poisson's ratio [18].
A new class of cellular materials was reported pre- A variety of structural models can give rise to a
viously [1]; these materials exhibit a negative negative Poisson's ratio [19], nevertheless negative
Poisson's ratio. Such materials expand laterally when Poisson's ratios are unusual. Indeed, in a large com-
stretched and contract laterally when compressed. pilation of properties of polycrystalline materials [20],
This unusual characteristic is achieved by forming the most have Poisson's ratio in the vicinity of 1/3 with
cells into a "re-entrant" shape which bulges inwards exceptions such as beryllium which has a Poisson's
and which unfolds under tension resulting in a lateral ratio of about 0.1, and ammonium chloride which
expansion. These cellular solids can be made from a assumes a negative value over a narrow temperature
variety of polymers [I] or from metals [ 1, 2]. Negative range.
Poisson's ratio materials are of interest because of It is the purpose of this article to identify the
their unusual nature, and because they deform in ways relevant microstructural features associated with
unexpected on the basis of experience with ordinary negative Poisson's ratio materials and to present sev-
materials. For example, their shear modulus can sub- eral structural models which exhibit these features in
stantially exceed their bulk modulus, a situation op- isolation. In the next section the role of structure in
posite that seen in rubbery materials. Moreover, many determining Poisson's ratio is explored, and in the
relationships for deformation in the theory of elas- section following that, the connection between struc-
ticity contain terms (I - v1) with v as Poisson's ratio. tures of interest and generalized continuum mechanics
so that for v approaching its lower limit - 1, en- is examined.
hanced shear rigidity or high toughness can be achiev-
ed [I], which can be of use in various applications [3].
The materials also exhibit unusual acoustic properties 2. Microstructure and Poisson's ratio
related analytically to the Poisson's ratio [4, 5], as well 2.1. Cauchy relations
as acoustic properties experimentally determined and In the early development of the theory of elasticity, it
directly related to the re-entrant structure [6]. was believed by some (such as Navier and Poisson)

Negative Poisson's ratios can also arise in two- that isotropic materials were describable by only one
dimensional honeycombs with inverted cells [7], in elastic constant and that Poisson's ratio was 1/4 for all
rocks with microcracks [8, 9], in an anisotropic micro- isotropic materials. The basis for this view (so-called
cellular polymer, expanded polytetrafluoroethylene uniconstant theory) was an atomic model in which the
[10, 1I1], in anisotropic fibrous media in some direc- atoms as point particles in a centrosymmetric lattice
tions [12-14], in anisotropic pyrolytic carbon [15]. [21] interacted by central forces dependent upon dis-
While it had been reported that single-crystal pyrites tance alone. Based on such a model, the tensorial
had a negative Poisson's ratio, recent study indicates elastic constants of an anisotropic solid become re-
otherwise [16]. Thin (anisotropic) magnetized ferro- lated by -Cauchy relations"; for an isotropic medium,
magnetic films have been reported to exhibit a transient the Cauchy relations imply a Poisson's ratio of 1/4 for
negative Poisson's ratio which disappears with ageing all materials described by the model. These arguments
[17]. Macroscopic structures of sliders, hinges. and have been recapitulated by modern authors [21-23].
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Figure I Hexagonal honeycomb structure or bendable ligaments.

Experiments disclosed Poisson's ratios for most corn- ces are summed over. Affine deformation kinematics
mon isotropic materials to be close to 1/3, resulting in are necessary conditions for the Cauchy relations to
the abandonment of uniconstant elasticity theory gov- be obtained [211.
erned by the Cauchy relations. The classical theory of
elasticity now used incorporates two independent
elastic constants for isotropic materials, and we realize
that the above simple model does not have general 2.2. Non-affine deformation
applicability. A honeycomb composed of regular hexagonal cells

Poisson's ratios differing from 1/4 can arise from (Fig. 1) has a Poisson's ratio of + 1 [7, 25]. The cell
deviations from the above assumptions, specifically ribs undergo bending if the honeycomb is stretched or
(i) non-central forces between particles in the solid, sheared. The deformation is not affine because some
(ii) forces which do not depend on distance alone, or pairs of nodal points move apart during stretching
(iii) anisotropy, including noncentrosymmetry. We ad- while others do not. Indeed, a honeycomb without any
dress in this article the question of what kind of bending can be made of elastic (spring) elements free
interaction results in a Poisson's ratio which is neg- to rotate at the joints. Because they would rotate
ative. not just different from 1/4. To that end, we without stretching if the honeycomb were under ten-
considei several microstructures with the aim of dis- sion, such a structure has a zero Young's modulus. To
tinguishing which kinds of interaction are most im- obtain an elastic honeycomb, additional soft elements
portant to achieve a negative Poisson's ratio. Most of could be inserted to supply the restoring force; the
these structures are two-dimensional and isotropic in Poisson's ratio would be slightly less than I.
plane in their classical elastic properties either by Re-entrant honeycomb cells such as those shown in
virtue of the choice of the elastic stiffness of the micro- Fig. 2 give rise to a negative Poisson's ratio [25, 26].
elements or by symmetry. As for symmetry, materials The ligaments undergo bending and the deformation
which are structurally hexagonal, are transversely iso- is manifestly non-affine in that the cells unfold during
tropic, i.e. isotropic in plane, within the framework of stretching of the honeycomb. In particular, points A
classical elasticity [24]. The range for Poisson's ratio, and B move further apart than expected from the
v, for isotropic materials is - I < v < 1/2 in three global strain, while points C and D maintain their
dimensions and - I < v < I in two dimensions. separation during stretching. Again, bending is not

Under static conditions, noncentral forces must be essential in that a similar effect can be achieved with
accompanied by a moment, to satisfy the equilibrium stretchable (spring) elements only, which are free to
equations. The kinematical variable conjugate to a pivot with no rotational constraint. The structure is
moment is a rotation angle. As for forces which do not orthotropic, however by appropriate choice of the rib
depend on distance but instead connect only selected widths and angles, an elastically isotropic honeycomb
pairs of particles, the corresponding kinematical de- with a Poisson's ratio of - I can be obtained. For
formation is a non-alfine one. This is in contrast to comparison, a structurally hexagonal re-entrant hon-
affine deformation in which the particles in the solid eycomb structure is shown in Fig. 3; this is isotropic in
move in a way corresponding to a uniform strain plus plane by virtue of symmetry. In this case as well, the
a rotation in a continuum, i.e. uj = ax in which u, is bendable ligaments can be replaced by rigid ones
the displacement, x, is the particle position, a,, is a which are free to pivot, and the restoring force sup-
tensor describing the deformation, and repeated indi- plied by elastic elements (not shown).
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Figure? Re-entrant honeycomb with negative Poisson's ratio. C.. )
made of bendable ligaments. A similar structure can be made with -

rigid ligaments if a spring is placed between points of type A and B, K 1

Figure 4 Lattice of rigid rotatable nodes linked by elastic ligaments.

0

0

o.00

0.0 0.1 0.2 0.3 0.4 0.5

"Id
Figure 5 Behaviour of structure shown in Fig. 4. Poisson's ratio

versus rotatable node size, r. divided by lattice spacing. d, and spring

Figure 3 Structurally hexagonal re-entrant honeycomb with neg- stiffness ratio k3 k1 , which is a measure of the relative magnitude of
ative Poisson's ratio. Solid lines are bendable ribs. the noncentral forces. Poisson's ratio is positive if all the ligament

stiffnesses are positive.i i)k 3,k = l.IE)k3,kl = 2.(A)k 3 k, = 5.
(+ ) k,'k = 1/2.

2.3. Non-central forces
The above examples indicate it is possible to obtain
large magnitudes of Poisson's ratio, including negative ratio is 1/4 as is the case in three dimensions. Introduc-
values, using central force interactions alone. These tion of non-central forces reduces the Poisson's ratio:
structures deform in a non-affine manner. We now however, negative Poisson's ratios are not obtained
consider the effect of non-central forces alone, with unless one of the ligament stiffnesses becomes neg-
affine deformation. A two-dimensional structure of ative. Such a ligament would be unstable if isolated,
rigid rotatable nodes linked by elastic ligaments, ori- but the stability criterion for the entire lattice remains
ginaily examined in a study of generalized continuum - I < v < 1. If the restriction of isotropy in this
mechanics [27], is of interest in this vein and is shown structure is relaxed, the minimum Poisson's ratio is
in Fig. 4. The sturcture is cubic, however it is possible still zero for non-negative ligament stiffness. The
to obtain elastic isotropy by choice of the stiffnesses of structure in Fig. 4 may be considered in relation to an
the elastic ligaments. Given the Lame and Cosserat earlier analytical study of granular materials [28].
elastic constants provided in [27], we invoke isotropy Negative Poisson's ratios are theoretically possible in
(which results in a relationship between stiffnesses), set such granular systems if the stiffness for tangential
up the lattice without prestrain in any of the liga- deformation were to exceed that for normal deforma-
ments, and calculate the engineering elastic constants tion. However for spherical granules with perfect slip,
in terms of the node size and the relative magnitude of v = 1/4, while for contact without slip, 0 < v < 0. 11,
the noncentral forces. Calculated Poisson's ratios are consequently Poisson's ratio is positive for real
shown in Fig. 5. Observe that a rotatable node size of granular materials.
zero or a zero stiffness for the ligaments, k3 , which are Non-central forces can also be introduced by
attached to the rotatable node periphery, results in a endowing the lattice's connecting ligaments with
lattice governed by purely central forces; the Poisson's bending and torsional rigidity. We consider such a
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* 0.0.0 0 01 02 O3 04 05 Figure 7 Chiral (noncentrosymmetnic) hexagonal microstructure of
rotatable nodes and bendable ligaments. Poisson's ratio is negative.

Figure 6 Poisson's ratio versus rotatable node size, r, divided by
lattice spacing, d. for non-central force lattice shown in Fig. 4. with
prestrain in the ligaments. Prestrain factor, f is the ratio of natural an affine manner. However, if we represent the struc-
length of the vertical and horizontal ligaments to their length in the ture as an assemblage of point particles, the "points"
lattice, the lattice spacing. k3 /k Iis a ratio of ligament stiffnesses. m) in the rigid nodes become connected by very stiff
k3 /k, = l.j= I; (l) k3/k, = l/2,f= 1/2; (A) k3/k, = 1I4.f= l/2, ligaments; in such a view the deformation becomes
(f) k=/k, = I/8. x = ) /8; ( ) k1/kf = 8. f= 8; ( + ) k3/k = 1/2. non-affine. A related "molecular" model was de-
f= 2= ( ×x k,/, /4.f =2. veloped [30] which incorporated rotational degrees of

freedom and a nearest neighbour inverse nth power
interaction. Negative Poisson's ratios arose in this

three-dimensional cubic lattice of points linked by model if the molecules were given a preferred orienta-
extendable, bendable and twistable ribs [29]. Given tion or tilt. This is also a chiral structure, so despite the
arbitrary rib stiffnesses, the structure is orthotropic: title given to reference [30] the structure is not iso-
however, we derive conditions on the ligament stiff- tropic. The tilting disc model in [1I, 19] also appears
nesses to achieve isotropy. We find the Poisson's ratio to have a chiral asymmetry; however, it was not
to be 1/4 for zero rib-bend stiffness. The bend rigidity discussed by the authors.
of straight ribs reduces the Poisson's ratio by a small
amount even if the ribs are thick. The lower bound on
Poisson's ratio for this lattice is zero, and it is ap- 3. Role of generalized continuum
proached if the bend stiffness of the ribs can be made mechanics
larger than the extensional stiffness. The non-affine, rotational and noncentrosymmetric

For the structure in Fig. 4, let us introduce a pre- degrees of freedom considered above in a structural
strain in the vertical and horizontal ligaments, k,. The sense can also be viewed in the context of continuum
corresponding prestrain is then determined for the mechanics. Continuum theories for elastic materials
ligaments. k3 , based on equilibrium considerations. are available with different amounts of freedom, the
Ligament stiffness is again kept positive. Poisson's uniconstant and classical elasticity theories discussed
ratio can be made either greater or less than 1/4 or can above are the simplest examples. Although the con-
be made negative as shown in Fig. 6. End points on tinuum and structural views are distinct, we consider
the ct, yes in Figs 5 and 6 represent the allowable insight gained in one perspective to be transferable to
range for positive stiffness of all ligaments under the the other.
restriction of elastic isotropy. The model can also yield Cosserat elasticity [31], also known as micropolar
Poisson's ratios less than - I: the lattice is then elasticity [32], allows the points in the solid rotational
unstable to small perturbations. Observe that the freedom as well as translational freedom. Correspond-
negative Poisson's ratios can be obtained only if both ingly there is a couple per unit area or couple stress as
non-central forces and prestrain are present simultan- well as the usual stress which is a force per unit area.
eously. An isotropic Cosserat solid is described by six elastic

constants. Conceptually. this continuum representa-
tion corresponds to a microstructure containing rotat-

2.4. Noncentrosymmetry able elements which support bending or torsional
An unusual type of anisotropy is displayed by the loads [29] or are connected by ligaments which can
hexagonal structure given in Fig. 7. The structure has support such loads. It had been suggested that Cos-
a negative Poisson's ratio as can be appreciated by serat elasticity could be a mechanism for negative
visualization or by making a model. The structure is Poisson's ratios [33], however the range for Poisson's
not equivalent to its mirror image, so it lacks a centre ratio in a Cosserat solid is the same as that for classical
of symmetry. Such structures are known as non- elasticity [32, 34]. Cosserat solids differ from classical
centrosymmetric, hemitropic, or chiral, they can be ones in that stress concentration factors differ from
isotropic with respect to direction but by definition classical predictions, as does the rigidity of bars in
are not isotropic with respect to handedness. In con- bending and torsion. Such effects depend on the char-
trast to the centrosymmetric lattice in Fig. 6, no pre- acteristic lengths which are additional elastic con-
strain is needed. The centres of the rigid nodes move in stants in Cosserat theory; if these lengths vanish.
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classical elasticity is obtained as a special case. If the anism of directional anisotropy has not been treated
strains in the object vary over scales comparable to here. Rocks can be anisotropic; however, it is possible
the characteristic lengths, then the stress will differ that the effects reported in rocks with microcracks
significantly from classical predictions. Experiments [8,9] are due to non-affine deformation in the opening
have disclosed several materials to behave as Cosserat of the microcracks. Theoretical analyses of the effect of
solids, but the Poisson's ratios are not unusual (see, microcracks [41] predict that when there are enough
e.g. [35]). cracks to reduce the Poisson's ratio to zero, Young's

Chiral or noncentrosymmetric solids are those modulus also becomes zero, so that negative Poisson's
which are not invariant to an inversion of the co- ratios are not predicted by these theories, and theory
ordinates. No mechanical effect of such asymmetry is and experiment fail to agree in this case. Rocks can
predicted by classical elasticity. Cosserat elasticity exhibit complex behaviour the Poisson's ratio of rock
allows the effects of chirality to be incorporated in a can depend very much on the stress history [42].
natural way; new effects are predicted such as the Polymer gels represent another interesting class of
untwisting of a bar under tensile force, and size effects materials: such gels can exhibit negative Poisson's
in Poisson's ratio [36]. ratios over a narrow temperature range during phase

Another generalized continuum theory is of elastic transitions [43]. The mechanism for this has not been
materials with microstructure [37], or micromorphic elucidated; however, we surmise that prestrain is in-
solids [38]. This theory allows the points in the solid volved. It remains to be determined by experiment
to translate, rotate, and deform; the theory is therefore which structural mechanisms are most important in
more general than classical elasticity or Cosserat generating the effects in real materials such as the
elasticity, and an isotropic solid is described by 18 above.
elastic constants, The allowable range for Poisson's Structural mechanisms are of interest in connection
ratio is nevertheless identical to that for classical with the other material properties of materials with
elastic solids (39]. Because the local micro-deforma- negative Poisson's ratios. For example, the non-affine
t;on can differ from the macro-deformation, a micro- mechanism is associated with an unfolding of the unit
elastic solid of this type would experience non-affine cells. Such unfolding results in a change in the relation
deformation in the structural view. between stress and strain under large deformation: the

Each structural mechanism considered here which stress-strain curves for re-entrant foam tend to be
gives rise to a negative Poisson's ratio is associated more linear than those of conventional foams. As for
with a generalized continuum. Yet the generalized dynamical aspects, the convoluted unit cells can vi-
continuum theories allow the same range of Poisson's brate and give rise to unusual acoustic behaviour [6]
ratio as does classical elasticity. Not all solids which not explicitly associated with the Poisson's ratio.
behave as generalized continua will have a negative Moreover, it is possible that non-affine deformation
Poisson's ratio; however, all negative Poisson's ratio kinematics can be exploited to make new materials
materials will be describable as generalized continua, with unusual and useful acoustic behaviour. As for
The characteristic lengths may be sufficiently small density, the materials originally reported [1] were
that the resulting nonclassical effects are too small to polymer foams of relatively low relative density (solid
observe. Nevertheless the Poisson's ratio is a macro- volume fraction) with cells of size 0.3-2.5 mm. The
scopic result of the microstructure; it is measurable no foam cells could, in principle, be arbitrarily small,
matter how small the structure is. For materials in down to molecular scale. The upper bound on the
which the structure size is sufficiently large, non- relative density of this type of material is not yet
classical effects describable by generalized continuum known; however, we have no doubt there is such a
mechanics can be substantial. It is important to con- bound and that it is significantly less than unity. As for
sider which theory actually describes the material; for stiffness and strength, low density in cellular solids is
example Cosserat elasticity predicts a reduction of associated with low stiffness, and although metal foam
stress concentration factors for holes and cracks in is much stiffer than polymer foam [I, 2], materials
comparison with classical values, while a different with negative Poisson's ratios with higher density
special case of microstructure elasticity predicts an would be of interest [44]. The possibility of making
increase [39, 40]. high-density "solids" based on non-central forces with

prestrain, or on chiral structures, is an intriguing one.
As for toughness and damage resistance, the Poisson's

4. Discussion ratio itself has bearing upon the stress concentration
Several structural mechanisms have been found to factors in certain three-dimensional crack geometries
give rise to a negative Poisson's ratio: non-affine [1] such that negative values of large magnitude are
deformation, non-central force interaction combined advantageous. The generalized continuum aspects of
with prestrain, and chiral structure combined with these materials also affect stress concentration factors.
either non-central force or non-affine deformation. Consequently, the toughness and damage resistance of
The materials originally reported [I] by the author these materials is expected to depend on the deforma-
have freedom to undergo both non-affine deformation tion mechanisms described above and upon the cell
and bending of the ligaments (hence noncentral force). size. Experiments are required to elucidate the
Other materials which have been reported to have a connection.
negative Poisson's ratio are mostly anisotropic and Structural mechanisms are also of interest in
exhibit the effect only in some directions; the mech- connection with the fabrication of materials with
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